
A Value Analysis for C programs

Géraud Canet, Pascal Cuoq, Benjamin Monate∗

Software Reliability Labs
CEA LIST

Boite 65, 91191 Gif-sur-Yvette Cedex, France
First.Last@cea.fr

Abstract

We demonstrate the value analysis of Frama-C. Frama-
C is an Open Source static analysis framework for the C
language. In Frama-C, each static analysis technique, ap-
proach or idea can be implemented as a new plug-in, with
the opportunity to obtain information from other plug-ins,
and to leave the verification of difficult properties to yet
other plug-ins. The new analysis may in turn provide ac-
cess to the data it has computed.

The value analysis of Frama-C is a plug-in based on ab-
stract interpretation. It computes and stores supersets of
possible values for all the variables at each statement of the
analyzed program. It handles pointers, arrays, structs, and
heterogeneous pointer casts. Besides producing supersets
of possible values for the variables at each point of the exe-
cution, the value analysis produces run-time-error alarms.
An alarm is emitted for each operation in the analyzed pro-
gram where the value analysis cannot guarantee that there
will not be a run-time error.

1. Frama-C’s value analysis

Frama-C’s value analysis[1] is a mostly automatic source
code analyzer that relies on the principles of abstract inter-
pretation. Its defining quality is that it is correct: it never
remains silent for an operation in the source code for which
there is a risk of run-time error. This guarantee only holds
in the conditions defined in the corresponding manual[1].
The complete source code must be provided and the user
takes responsibility for any necessary modelization of sys-
tem calls. This includes system calls for dynamically allo-
cating memory and creating concurrency. We show what
results can be expected from Frama-C’s value analysis on
two examples. In the first example, the value analysis helps
identify a bug in the analyzed code.

∗This work has been supported by the French Agence Nationale de la
Recherche (ANR) project U3CAT/2008SEGI02101

For a given precision, being allowed false negatives gives
a static analyzer a chance to display less false positives (the
analyzer can discard the alarms that seem most likely to
be false positives). Frama-C’s value analysis renounces the
privilege to make this (difficult in itself) selection and dis-
plays all the alarms it finds. It aims to be usable for proving
the absence of bugs, for instance in the verification of criti-
cal embedded software where the restrictions the value anal-
ysis places on the analyzed source code can be worked with.
Despite the extreme position adopted by the value analysis
on the compromise between false positives and false neg-
atives, the number of false positives can remain contained,
when the code lends itself well to analysis. The second in-
cluded example, an analysis of the cryptographic hash func-
tion Skein-256, shows that sometimes the number of false
positives can be zero. When, as in this example, there are no
alarms, the software is guaranteed not to cause any run-time
error—with other interesting properties that can be deduced
along the way. One reason for having the value analysis as a
plug-in in a more general verification framework (by oppo-
sition to existing standalone sound analyzers such as Astrée
or PolySpace) is in fact to provide means to recover from
false positives when the objective is not to find bugs but to
prove their absence.

2. Example from the Verisec files

Verisec[3] is a C analysis benchmark. It is composed of
numerous separate files, each containing code from various
real-life software sources (Apache, sendmail, etc.) where
bugs such as buffer overflows have previously been detected
and fixed. We show how using the value analysis, we found
a bug in a C file extracted from the OpenSER source code
(case CVE-2006-6876). Though a mistake in a declaration
can lead to the bug that is the subject of the benchmark, we
found a more subtle error in this file.

When it is launched with default settings on this exam-
ple, the value analysis warns about two statements. For
each, the analyzer is unable to exclude the possibility that



some executions of the program might perform out of
bounds accesses, but it cannot guarantee that there is a prob-
lem for either.

We instruct the analyzer to try for increased precision
at the cost of using more resources—specifically, unrolling
loops. This second analysis eliminates the second warn-
ing. This means that it was a false alarm after all: the an-
alyzer now guarantees that there is no out-of-bound access
at that statement. The first alarm remains, located a few
statements before the bug mentioned in the original CVE
report. By interactive examination of the supersets of val-
ues computed by the analysis, we uncover the cause of the
alarm. The value analysis detects an execution path with a
possible buffer overflow when an option “+C” expecting a
numerical argument is parsed right at the end of the 8-char
null-terminated input buffer.

We then design an input vector to expose the problem.
A key step is to use the concrete value ”ABCDE+C” in
the incriminated buffer. Launched on the now determin-
istic piece of code, the analysis positively detects an out-of-
bound access at the incriminated statement, validating our
suspicions. Note that the buffer overflow would likely not
be detected in a test of the uninstrumented binary, even if
the problematic input vector was used.

The code in the Verisec benchmark is a much simplified
version of a function that is still present in OpenSIPS and
Kamailio, two projects derived from OpenSER. Thanks to
the knowledge gathered on the simplified version, and again
with the help of the interactive observation of the supersets
propagated by the value analysis, we were able to reproduce
the bad sequence in the original code.

3. A verification of Skein-256

Skein[2], a NIST SHA-3 contestant, is a set of crypto-
graphic hash functions. Of the many formal properties that
would be desirable to establish for it, we only consider the
absence of run-time error and similar safety properties, not
cryptographic properties. For this demo, we only establish
these in the context of computing the 64-bit hash of an ar-
bitrary 80-character message in a single call to the func-
tion Skein_256_Update from the reference implemen-
tation. Also, the results only hold for the platform for which
Frama-C is configured (by default, IA-32 and gcc).

The functions memcpy and memset, used by Skein-
256, must be provided in source form. We also de-
fine, in ten lines of C, an analysis context. The con-
text initializes a 80-char input buffer msg to unknown val-
ues. This guarantees that all further results (values, ab-
sence of RTE) will encompass all possible messages. The
buffer is then passed to the functions Skein_256_Init,
Skein_256_Update and Skein_256_Final. The
value analysis takes about 10 seconds and does not warn

about any possible run-time error in this program. Because
the analysis is correct, the absence of alarms formally estab-
lishes that there cannot be any run-time error when calling
the Skein-256 functions in a pattern that follows that of our
analysis context. In addition, further automatic Frama-C
analyses show that the output buffer and the state explicitly
passed from each Skein function to the next are the only
variables that are written to, and msg, the state, and a static
variable named ONE1 the only variables that are read from,
during these function calls. Because in the analysis con-
text, the state is declared as an uninitialized local variable,
the value analysis would emit an alarm if any single field
of this struct was read before having been written to2. In
fact, thanks to all the preceding results, and because any
possibility of an unspecified operation at run-time would
cause an alarm, we can guarantee that on IA-32/gcc, with
our implementations of memcpy and memset, two suc-
cessive sequences of calls to the functions Init, Update
and Final on the same 80-byte message, in the same or
different programs, produce the same hash as long as ONE
has not been modified, regardless of compiler decisions in
the memory layout, of the contents of the state before it is
passed to Init, and of the contents of other variables3.

4. Conclusion

We have shown that the value analysis of Frama-C can
be useful in itself to detect bugs or prove their absence. Any
Frama-C plug-in can also make use of the supersets of pos-
sible values computed by the value analysis to simplify its
own treatment of C programs (e.g. regarding aliasing). The
workability of the concept is corroborated by the list of ex-
isting plug-ins: value analysis, synthetic functional depen-
dencies, program dependency graph, slicing (each of which
builds upon the results of the previous ones), weakest pre-
condition. . .

References

[1] Frama-C: http://frama-c.cea.fr.
[2] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare,

T. Kohno, J. Callas, and J. Walker. The Skein hash function
family. Submission to NIST, 2008.

[3] K. Ku, T. E. Hart, M. Chechik, and D. Lie. A buffer overflow
benchmark for software model checkers. In ASE ’07: Pro-
ceedings of the twenty-second IEEE/ACM international con-
ference on Automated software engineering, pages 389–392,
New York, NY, USA, 2007. ACM.

1The variable named ONE is used to dynamically detect endianness
2By contrast, if a local variable is passed by address to several func-

tions, a C compiler does not detect when it is used without being initialized
3We have not proved that the functions always terminate, but if they fail

to terminate for one message, then they fail to terminate every time they
are applied to this message


